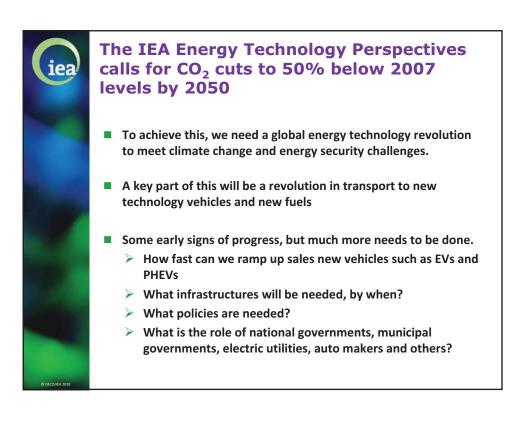
19TH OSCE ECONOMIC AND ENVIRONMENTAL FORUM "Promotion of common actions and co-operation in the OSCE area in the fields of development of sustainable energy and transport" SECOND PREPARATORY MEETING (DEVELOPMENT OF SUSTAINABLE TRANSPORT)

Druskininkai, Lithuania, 4-5 April 2011

Session II

EEF.DEL/24/11 4 April 2011

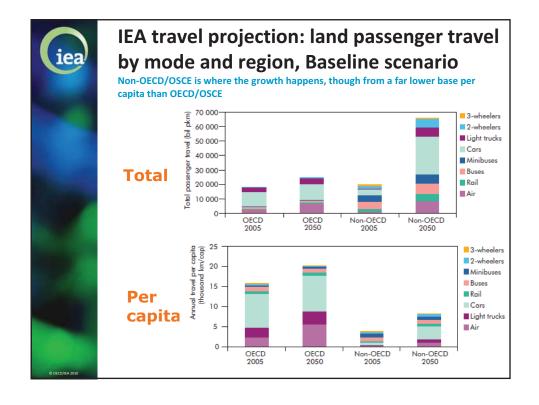

ENGLISH only

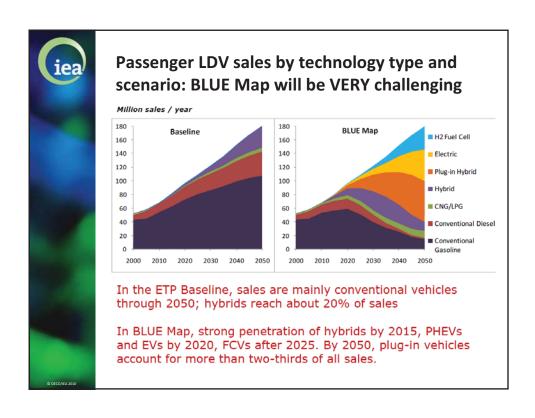
19th OSCE Economic and Environmental Forum
Druskininkai, Lithuania, 4 Apr 2011

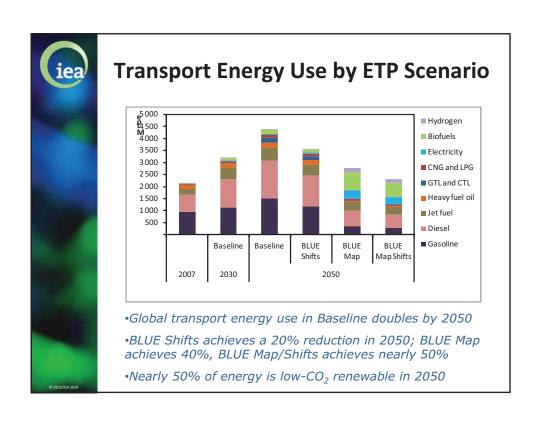
Improvement of Energy
Efficiency in the Transport Field:
Outline of IEA's Mobility Model
and BLUE Map Scenario

www.iea.org

International Energy Agency

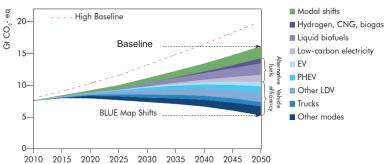





Key Transport steps to achieve BLUE Map outcomes

- BLUE Map technology solutions
 - 50% reduction in conventional new PLDV (car, SUV) fuel intensity by 2050
 - 30-50% reduction in energy intensity for bus/truck/rail/ships/aircraft by 2050
 - Strong uptake of advanced technology vehicles and Fuels
 - Plug-in Hybrids [PHEVs], starting in 2010-2015
 - Battery electric vehicles [BEVs], starting in 2010-2015
 - Fuel cell vehicles [FCVs], starting in 2025
 - Advanced, low-GHG Biofuels reach 12% of transport fuel use by 2030, 25% by 2050
- BLUE Shifts *travel* solutions
 - 25% lower level of car and air travel in 2050 compared to Baseline
 - Up to 2x travel by rail, 1.5x bus (such as Bus Rapid Transit systems)
 - Lower travel demand due to better land use planning, road pricing, telematic substitution

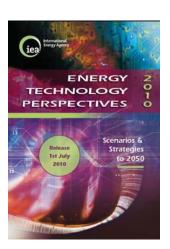
© OECD/IEA 2010



Transport GHG emission wedges

(well-to-wheel CO₂-eq)

Worldwide, GHGs increase from 7 to over 16 Gt in the Baseline in 2050 and to over 19 Gt in the High Baseline. The combination of technology changes and modal shift yields a reduction to about 5 Gt in BLUE Map/Shifts. (Shifting yields bigger reductions than shown here if the technology targets in BLUE Map are not achieved.)



Conclusions for OSCE

- Without strong policy interventions, oil use and related CO₂ emissions worldwide could double by 2050
 - Most growth will be in the developing world, though per-capita CO2 starts much lower than in OECD or OSCE countries
- We can change this picture dramatically and cut transport CO2 below current levels via a combination of
 - Strong efficiency improvements, rapid uptake of advanced technologies, and strong adoption of alternative fuels
 - New LDV fuel economy could reach 4 L/100 km, 90 g/km CO₂ by 2030, probably sooner in most OSCE countries
 - Strong uptake of EVs will result in 2-3% stock share by 2020 but could reach 15% by 2030, 50% by 2050
 - Modal shifts via smart growth and strong investments in state-of-art transit and bus systems
 - Shifting 25% of future car and air travel to other modes (with some cuts from smart growth, telematics, etc) would cut energy use 20%

O OECD/IEA 2010

Thank You

www.iea.org/techno/etp/index.asp

Backup Slides

Projected electric and plug-in hybrid vehicle sales through 2020, based on national targets

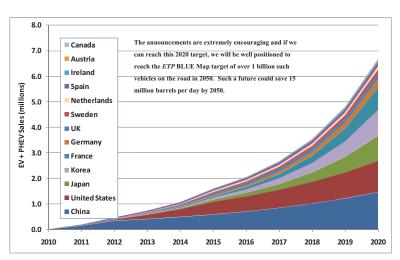


Figure based on announced national sales and stock targets, with assumed 20% annual sales growth after target is met, if target is before 2020 (e.g. China's target is for end of 2011).

EV / PHEV sales could reach nearly seven million by 2020

What is MoMo?

- It is a spreadsheet model of global transport, energy use, emissions, safety, and materials use
 - Analysis of a multiple set of scenarios, projections to 2050
 - Based on hypotheses on GDP and population growth, fuel economies, costs, travel demand, vehicle and fuel market shares
- World divided in 11 regions, plus a good number of specific countries (for road modes only, being extended to other modes)
 - USA, Canada, Mexico, Brazil, France, Germany, Italy, UK, Japan, Korea, China, India
 - The model is suitable for handling regional and global issues
- It contains a large amount of information (data) on technologies and fuel pathways
 - Full evaluation of the life cycle GHG emissions
 - Cost estimates for new light duty vehicles
 - Estimates for fuels costs and taxes
 - Section on material requirements for LDV manufacturing
- It is based on the "ASIF" framework:

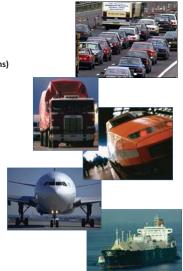
Activity (passenger travel) * Structure (travel by mode, load factors) * Energy Intensity = Fuel use

OECD/IEA 2010

Analytical capabilities (1)

- For LDVs and trucks, Tracking of
 - A stock model has been developed for LDVs
 - Activity, intensity, energy use
 - GHG emissions (on a WTW, a TTW basis)
 - Pollutant emissions (CO, VOCs, PM, lead and NO_x)
 - Fuel and vehicle costs (only for LDVs)
- For buses, 2/3 wheelers, we track stock, tkm, stock efficiency, energy use and emissions
- For rail and air, total travel activity (in pkm or tkm), stock efficiency, energy use and emissions is tracked
- For shipping, so far just energy use and emissions
- Material requirements and emissions have been integrated in the model
 - Analysis of future vehicle sales (e.g. fuel cells) and how they impact materials requirements (e.g. precious metals, Li) is possible
 - Full life-cycle analysis for GHG emissions from LDVs (including manufacturing);
 - Tailpipe emissions of various pollutants

Analytical capabilities (2)


- Increasingly versatile model
 - Suitable for simple "what-if analysis" to understand changing trends given the variation of one or more variables
 - Analysis of hypotheses on vehicle fuel economies and fuel shares
 - Learning incorporated in the model, given initial and "asymptotic" technology prices
 - Suitable for analysis based on inputs relative to economic growth, population growth and the variation of fuel prices
 - Travel and vehicle ownership affected
 - Prices module being improved to account for the variation of the main feedstock prices given changes in the oil price
 - Full "back-casting" possible
 - The model is fully transparent, all calculations can be tracked back
 - No black box effect
 - Inevitable limitations, being progressively overcome to help the model user and to improve the quality of the results

© OECD/IEA 2010

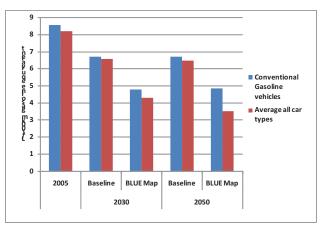
Coverage of transport modes

- 2-3 wheelers
- Light duty vehicles
 - Spark ignition (SI) ICEs
 - Compression ignition (CI) ICEs
 - SI hybrid ICEs (including plug-ins)
 - CI hybrid ICEs (including plug-ins)
 - Hydrogen ICE hybrids (including plug-ins)
 - Fuel cell vehicles
 - Electric vehicles
- Heavy and duty vehicles
 - Passenger
 - Minibuses
 - Buses
 - Freight
 - Medium freight trucks
 - Heavy freight trucks
- Rai
 - Passenger
 - Freight
- Δi
- Water transport
 - National
 - International

Coverage of fuel pathways

- Liquid petroleum fuels
 - Gasoline
 - Diesel (high- and low-sulphur)
- Biofuels
 - Ethanol
 - Grain, sugar cane, advanced technologies (lignocellulose)
 - Biodiesel
 - Conventional (fatty acid methyl esters, FAME or biodiesel obtained from hydrogenation of vegetable oil in refineries), advanced processes (BTL, fast pyrolysis, hydrothermal upgrade)
- Synthetic fuels
 - GTL and CTL
- CNG/LPG
 - CNG, LPG, biogas
- Electricity
 - Separately for EVs and PHEVs; by generation mix, by region
- Hydrogen
 - from natural gas, with and without CO₂ sequestration
 - from electricity, point of use electrolysis, with and without CO₂ sequestration
 - from biomass gasification
 - advanced low GHG hydrogen production

© OECO/IEA 2010


Costs of Baseline and BLUE Map, 2010-2050

- If EV and fuel cell vehicle costs drop as anticipated, by 2050 the transport BLUE Map scenario should be achievable at a marginal cost below USD 200/tonne CO2.
- During the transition costs will be higher, but costs will drop as volumes become higher so early high unit costs may not be that significant in the long run.
- On average between 2010 and 2050, BLUE Map may not be much more expensive, or possibly cheaper, than the Baseline.
 - In the Baseline, the total (undiscounted) cost of vehicles of all types between 2010 and 2050 is about USD 230 trillion, with another 150 trillion cost for fuel.
 - In BLUE Map, vehicle costs rise by an additional 22 trillion but fuel costs (at USD 120/bbl) drop by 20 trillion.
 - However, if the price of oil in BLUE drops, more savings accrue. For example, if the price drops to USD 60/bbl, the additional savings is USD 30 trillion.

© OECD/IEA 2010

iea

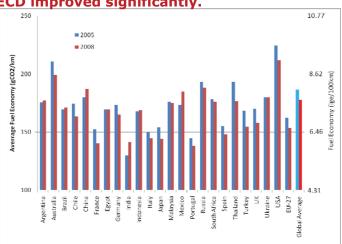
Passenger Light-duty vehicle fuel economy

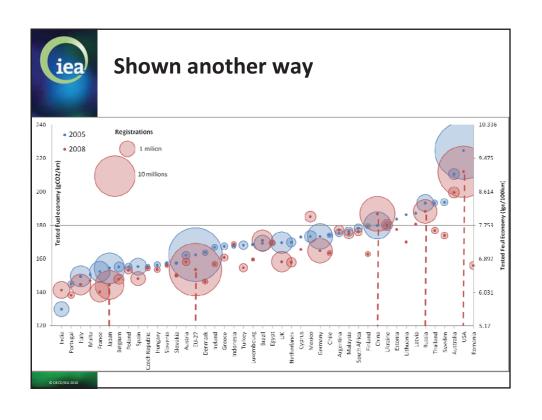
•Passenger light-duty vehicle (PLDV) fuel economy improves slowly in the Baseline (no extension of existing standards assumed).
•It improves much more in BLUE Map with maximum uptake of available incremental technologies; achieves about a 50% reduction in new LDV energy intensity by 2030, and an additional 20% by 2050.

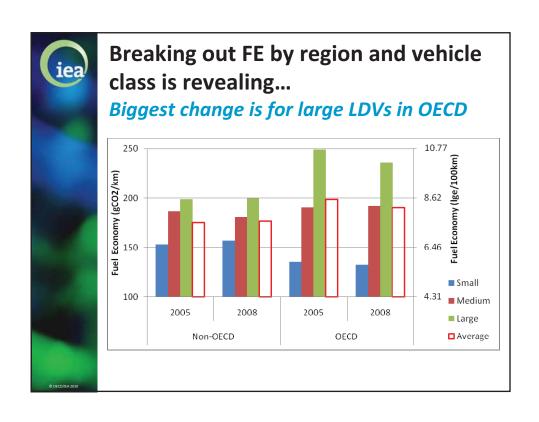
D OECD/IEA 2010

Results

The global average was about 8 L/100km in 2005. It improved to below 7.7 in 2008. But the rate of change was well less than that needed to hit GFEI targets.


		2005	2008	Annual Change 2005-2008
Fuel Economy (lge/100km)	Global Average	8.04	7.65	-1.6%
	GFEI Objective	8.04	4.02	-2.7%
		2005	2030	Required Annual Change 2005-2030


© OECD/IEA 2010



Results by country

There's a wide range of averages across the studied countries. Non-OECD countries have a lower (better) average than OECD, but improved less (or not at all) between 2005-2008 whereas OECD improved significantly.

